Приведенная стоимость

6.3. Показатели эффективности инвестиционных проектов, определяемые на основании использования концепции дисконтирования

6.3.1. Чистая текущая стоимость

Важнейшим показателем эффективности инвестиционного проекта является чистая текущая стоимость (другие названия – ЧТС, интегральный экономический эффект, чистая текущая приведенная стоимость, чистый дисконтированный доход, Net Present Value, NPV) — накопленный дисконтированный эффект за расчетный период. ЧТС рассчитывается по следующей формуле:

(6.10)

где Пm — приток денежных средств на m-м шаге;

Om — отток денежных средств на m-м шаге;

— коэффициент дисконтирования на m-м шаге.

На практике часто пользуются модифицированной формулой

(6.11)

где — величина оттока денежных средств на m-м шаге без капиталовложений (инвестиций) Кm на том же шаге.

Для оценки эффективности инвестиционного проекта за первые К шагов расчетного периода рекомендуется использовать показатель текущей ЧТС (накопленное дисконтированное сальдо):

(6.12)

Чистая текущая стоимость используется для сопоставления инвестиционных затрат и будущих поступлений денежных средств, приведенных в эквивалентные условия.

Для определения чистой текущей стоимости прежде всего необходимо подобрать норму дисконтирования и исходя из ее значения найти соответствующие коэффициенты дисконтирования за анализируемый расчетный период.

После определения дисконтированной стоимости притоков и оттоков денежных средств чистая текущая стоимость определяется как разность между указанными двумя величинами. Полученный результат может быть как положительным, так и отрицательным.

Таким образом, чистая текущая стоимость показывает, достигнут ли инвестиции за экономический срок их жизни желаемого уровня отдачи:

— положительное значение чистой текущей стоимости показывает, что за расчетный период дисконтированные денежные поступления превысят дисконтированную сумму капитальных вложений и тем самым обеспечат увеличение ценности фирмы;

— наоборот, отрицательное значение чистой текущей стоимости показывает, что проект не обеспечит получения нормативной (стандартной) нормы прибыли и, следовательно, приведет к потенциальным убыткам.

Пример 6.1 (продолжение) . Инвестиции в сумме 100 000 руб. при ежегодных в течение 6 лет денежных поступлениях (аннуитете) в сумме 25 000 руб. позволяют получить чистую текущую стоимость в сумме почти 16 000 руб. исходя из предположения о том, что фирма предусматривает применение нормы дисконта (т.е. стандартной нормы прибыли) на уровне 8 % после уплаты налога. Все первоначальные инвестиции будут возмещены в течение ~ 5-летнего периода. Чистая текущая стоимость проекта 15 575 руб. увеличила капитал фирмы на эту сумму в современном исчислении, что может защитить инвестора от возможного риска, в случае, если денежные поступления оценены неточно, а проект не завершит свою экономическую жизнь ранее намеченного срока (табл. 6.3).

Таблица 6.3

Чистая текущая стоимость при норме дисконта Е=8 %, руб.

Период времени

Инвестиции

Денежные поступления

Коэффициент дисконтирования при ставке 8 %

Чистая текущая стоимость разных лет

Кумулятивная чистая текущая стоимость

100 000

1,000

-100 000

-100 000

25 000

0,926

+23 150

-76 850

25 000

0,857

+21 425

-55 425

25 000

0,794

+19 850

-35 575

25 000

0,735

+18 375

-17 200

25 000

0,681

+17 025

25 000

0,630

+15 750

+15 575

100 000

150 000

+15 575

Пример 6.1 (продолжение) . Произведем расчет чистой текущей стоимости при увеличении нормы дисконта, равной 12 % (табл. 6.4).

Чистая текущая стоимость остается положительной, однако ее величина сократилась до 2 800 руб. При увеличении нормы дисконта при прочих равных условиях чистая текущая стоимость снижается. При норме дисконта Е = 14 % чистая текущая стоимость уменьшится еще больше и станет отрицательной величиной (-2 775 руб.).

Забегая несколько вперед, отметим, что срок окупаемости инвестиций с дисконтированием (т.е. промежуток времени, необходимый для того, чтобы кумулятивная чистая текущая стоимость стала положительной величиной) увеличивается (см. последние колонки табл. 6.3 и 6.4).

При норме дисконта 8 % срок окупаемости составит около 5 лет, в то время как при Е = 12 % — почти 6 лет.

Таблица 6.4

Чистая текущая стоимость при норме дисконта Е=12 %, руб.

Период времени

Инвестиции

Денежные поступления

Коэффициент дисконтирования при ставке 8%

Чистая текущая стоимость разных лет

Кумулятивная чистая текущая стоимость

100 000

1,000

-100 000

-100 000

25 000

0,893

+22 325

-77 675

25 000

0,797

+19 995

-57 750

25 000

0,712

+17 800

-39 950

25 000

0,636

+15 900

-24 050

25 000

0,567

+14 175

-9 875

25 000

0,507

+12 675

+2 800

100 000

150 000

+2 800

Наиболее эффективным является применение показателя чистой текущей стоимости в качестве критериального механизма, показывающего минимальную нормативную рентабельность (норму дисконта) инвестиций за экономический срок их жизни. Если ЧТС является положительной величиной, то это означает возможность получения дополнительного дохода сверх нормативной прибыли, при отрицательной величине чистой текущей стоимости прогнозируемые денежные поступления не обеспечивают получения минимальной нормативной прибыли и возмещения инвестиций. При чистой текущей стоимости, близкой к 0, нормативная прибыль едва обеспечивается (но только в случае, если оценки денежных поступлений и прогнозируемого экономического срока жизни инвестиций окажутся точными).

Несмотря на все эти преимущества оценки инвестиций, метод чистой текущей стоимости не дает ответа на все вопросы, связанные с экономической эффективностью капиталовложений. Этот метод дает ответ лишь на вопрос, способствует ли анализируемый вариант инвестирования росту ценности фирмы или богатства инвестора вообще, но никак не говорит об относительной мере такого роста.

А эта мера всегда имеет большое значение для любого инвестора. Для восполнения такого пробела используется иной показатель — метод расчета рентабельности инвестиций.

Предыдущая

Источник: http://www.aup.ru/books/m223/6_3_1.htm

Чистая приведенная стоимость: что это такое, что собой представляет этот показатель

При рассмотрении различных инвестиционных проектов возникает потребность в объективной оценке их эффективности. Справиться с этой задачей помогает расчёт показателя чистой приведенной стоимости (ЧПС, NPV — «net present value» — англ.).

Это сумма дисконтированных при заданной процентной ставке разниц между ожидаемыми поступлениями денежных средств и затратами на осуществление проекта. Таким образом, NPV показывает стоимость будущих потоков денежных средств, приведённую к сегодняшнему дню, что позволяет объективно оценить рентабельность инвестиционного плана.

Вычисление показателя необходимо выполнять поэтапно:

  1. Найти разность между прогнозируемой прибылью и инвестиционными затратами за каждый период времени (обычно за год).
  2. Определить ставку дисконта путём определения стоимости капитала.
  3. Привести полученные результаты к сегодняшнему дню – дисконтировать денежные потоки отдельно за каждый период.
  4. Найти сумму всех дисконтированных потоков денежных средств (как отрицательных, так и положительных). Это значение и составит ЧПС, показывающую общую прибыль инвестора.

Необходимость расчёта

Вычисление чистой приведенной стоимости – один из наиболее популярных методов прогнозирования эффективности инвестиционных программ. Оценка значения данного показателя позволяет дать ответ на главный для предпринимателя вопрос: «Вкладывать денежные средства в проект или нет?».

Необходимость определения NPV вызвана тем, что коэффициент позволяет не только оценить величину прогнозируемой прибыли, но и учесть тот факт, что любая сумма денежных средств в текущий момент времени обладает большей реальной стоимостью, чем такая же сумма в будущем.

Так, например, вместо инвестирования проекта предприниматель может:

  • Открыть депозитный счёт в банке и получать ежегодно прибыль в соответствии с процентной ставкой.
  • Приобрести имущество, ценность которого в будущем возрастёт на величину инфляции.
  • Спрятать денежные средства.

Поэтому вычисление показателя происходит с использованием заданной процентной ставки дисконта, которая позволяет учесть факторы инфляции и риска, а также оценить эффективность проекта по сравнению с альтернативными вариантами вложения средств.

Что собой представляет сравнительный подход к оценке бизнеса — читайте в этом материале.

Достоинства и недостатки доходного подхода к оценке бизнеса рассмотрены .

Формула и примеры расчёта

Формула вычисления NPV выглядит следующим образом:

Где:

  • t, N – количество лет иди других временных промежутков;
  • CFt – денежный поток за период t;
  • IC – первоначальные вложения;
  • i – ставка дисконтирования.

Для того чтобы правильно понять методику расчёта данного показателя, рассмотрим её на практическом примере.

Допустим, инвестор рассматривает возможность реализации двух проектов – А и Б. Срок реализации программ – 4 года. Оба варианта требуют первоначальных вложений в размере 10 000 руб. Однако прогнозируемые потоки денежных средств проектов сильно отличаются и представлены в таблице:

Год Денежные потоки проекта А, руб. Денежные потоки проекта Б, руб.
0 -10000 -10000
1 5000 1000
2 4000 3000
3 3000 4000
4 1000 6000

Так, проект А предполагает максимальную прибыль в краткосрочном периоде, а проект Б – её постепенное увеличение.

Определим NPV проектов при заданной ставке дисконтирования 10%:

  • Рассчитаем данный показатель для первого проекта по вышеуказанной формуле:
    • Найдём дисконтированную величину потоков денежных средств (CFдиск.) за каждый период:
      • 5000/((1+0,1)1)=5000/1,1=4545,5 руб. – за 1-ый год;
      • 4000/(1+0,1)2)=4000/1,21=3305,8 руб. – за 2-ой год;
      • 3000/(1+0,1)3)=3000/1,33=2253,9 руб. – за 3-ий год;
      • 1000/(1+0,1)4)=1000/1,46=683 руб. – за 4-ый год.
    • Просуммируем величины найденных потоков: 4545,5+3305,8+2253,9+683=10 788,2 руб.
    • Отнимем из показателя величину первоначальных вложений: NPVA=10 788,2-10 000=788,2 руб.

    Полученные расчёты можно проиллюстрировать схематически:

  • Аналогично определим ЧПС для второго проекта:
    • CFдиск.1=1000/((1+0,1)1)=909,1 руб.
    • CFдиск.2=3000/(1+0,1)2)=2479,2 руб.
    • CFдиск.3=4000/(1+0,1)3)=3005,2 руб.
    • CFдиск.4=6000/(1+0,1)4)=4098 руб.
    • ∑CFдиск.=10 491,5 руб.
    • NPVB=10 491,8-10 000=491,5 руб.

В связи с тем, что коэффициенты дисконтирования становятся меньше с каждым последующим годом, вклад больших, но более отдалённых по периоду времени потоков денежных средств в общую величину чистой приведенной стоимости уменьшается. Поэтому NPV проекта Б меньше соответствующего значения проекта А.

Пошаговый процесс вычислений подробно разобран на следующем видео:

Анализ результата

Главное правило, на которое опираются при оценке эффективности инвестиций методом NPV — проект следует принять, если величина показателя положительна. Если же данная величина отрицательна, то инвестиционный план является убыточным.

В случае, если показатель окажется равен 0, необходимо понимать, что доходные потоки денежных средств от осуществления программы способны возместить затраты, но не более того.

Вернёмся к приведённому выше примеру. ЧПС обоих проектов оказалась положительной, что говорит о том, что инвестор может вкладывать средства в любой из них, ведь они способны принести прибыль. Однако NPV по проекту А превышает аналогичное значение по проекту Б, что говорит о его большей эффективности. Именно инвестирование в первый проект является наиболее выгодным для предпринимателя – после 4-х лет реализации при первоначальных затратах в 10 000 руб. он способен принести чистую прибыль в размере 788,2 руб.

Таким образом, стоит помнить: чем выше показатель NPV инвестиций, тем выше их эффективность и прибыльность.

Достоинства и недостатки метода

Несмотря на такие преимущества метода, как учёт изменения стоимости денежных средств с течением времени и учёт рисков, следует помнить о ряде ограничений:

  • Все показатели, используемые в расчётах, носят прогнозный характер и остаются стабильными на протяжении всего срока реализации программы. В действительности же они могут значительно изменяться от заданных значений, что делает итоговую величину лишь вероятностным параметром.
  • Ставки дисконтирования часто корректируются с учётом возможных рисков, что не всегда оправдано и приводит к необоснованному понижению конечного значения ЧПС. В связи с этим инвестор может отказаться от реализации прибыльного проекта.

Таким образом, метод расчёта NPV позволяет легко и качественно оценить вероятную прибыльность инвестиций, приведённую к текущему моменту времени.

Однако стоит помнить, что данная методика носит прогнозный характер и пригодна только при стабильной экономической ситуации.

Источник: http://ZnayDelo.ru/biznes/chistaya-privedennaya-stoimost.html

Чистая приведённая стоимость

Чистая приведённая стоимость (ЧПС, чистая текущая стоимость, чистый дисконтированный доход, ЧДД, англ. Net present value, принятое в международной практике для анализа инвестиционных проектов сокращение — NPV) — это сумма дисконтированных значений потока платежей, приведённых к сегодняшнему дню.

Показатель NPV представляет собой разницу между всеми денежными притоками и оттоками, приведёнными к текущему моменту времени (моменту оценки инвестиционного проекта). Он показывает величину денежных средств, которую инвестор ожидает получить от проекта, после того, как денежные притоки окупят его первоначальные инвестиционные затраты и периодические денежные оттоки, связанные с осуществлением проекта. Поскольку денежные платежи оцениваются с учётом их временно́й стоимости и рисков, NPV можно интерпретировать как стоимость, добавляемую проектом. Её также можно интерпретировать как общую прибыль инвестора.

Иначе говоря, для потока платежей CF (Cash Flow), где C F t {\displaystyle CF_{t}} — платёж через t {\displaystyle t} лет ( t = 1 , . . . , N {\displaystyle t=1,…,N} ) и начальной инвестиции IC (Invested Capital) в размере I C = − C F 0 {\displaystyle IC=-CF_{0}} чистая приведённая стоимость N P V {\displaystyle NPV} рассчитывается по формуле:

N P V = ∑ t = 0 N C F t ( 1 + i ) t = − I C + ∑ t = 1 N C F t ( 1 + i ) t {\displaystyle NPV=\sum _{t=0}^{N}{\frac {CF_{t}}{(1+i)^{t}}}=-IC+\sum _{t=1}^{N}{\frac {CF_{t}}{(1+i)^{t}}}} ,

где i {\displaystyle i} — ставка дисконтирования.

В обобщённом варианте, инвестиции также должны дисконтироваться, так как в реальных проектах они осуществляются не одномоментно (в нулевом периоде), а растягиваются на несколько периодов. Расчёт ЧПС — стандартный метод оценки эффективности инвестиционного проекта и показывает оценку эффекта от инвестиции, приведённую к настоящему моменту времени с учётом разной временно́й стоимости денег. Если ЧПС больше 0, то инвестиция экономически эффективна, а если ЧПС меньше 0, то инвестиция экономически невыгодна (то есть альтернативный проект, доходность которого принята в качестве ставки дисконтирования требует меньших инвестиций для получения аналогичного потока доходов).

С помощью ЧПС можно также оценивать сравнительную эффективность альтернативных вложений (при одинаковых начальных вложениях более выгоден проект с наибольшим ЧПС). Но всё же для сравнительного анализа более применимыми являются относительные показатели. Применительно к анализу инвестиционных проектов таким показателем является внутренняя норма доходности.

В отличие от показателя дисконтированной стоимости при расчёте чистого дисконтированного дохода учитывается начальная инвестиция. Поэтому формула чистого дисконтированного дохода отличается от формулы дисконтированной стоимости на величину начальной инвестиции I C = − C F 0 {\displaystyle IC=-CF_{0}} .

Достоинства и недостатки

Положительные свойства ЧПС:

  1. Чёткие критерии принятия решений.
  2. Показатель учитывает стоимость денег во времени (используется коэффициент дисконтирования в формулах).
  3. Показатель учитывает риски проекта посредством различных ставок дисконтирования. Бо́льшая ставка дисконтирования соответствует бо́льшим рискам, меньшая — меньшим.

Отрицательные свойства ЧПС:

  1. В руководстве ЮНИДО критикуется использование NPV для сравнения эффективности альтернативных проектов (Беренс, Хавранек, 1995, стр.240). Для устранения этого недостатка NPV был разработан индекс скорости удельного прироста стоимости (Коган, 2012).
  2. Во многих случаях корректный расчёт ставки дисконтирования является проблематичным, что особенно характерно для многопрофильных проектов, которые оцениваются с использованием NPV.
  3. Хотя все денежные потоки (коэффициент дисконтирования может включать в себя инфляцию, однако зачастую это всего лишь норма прибыли, которая закладывается в расчётный проект) являются прогнозными значениями, формула не учитывает вероятность исхода события.

Для того чтобы оценить проект с учётом вероятности исхода событий поступают следующим образом:

Выделяют ключевые исходные параметры. Каждому параметру устанавливают ряд значений с указанием вероятности наступления события. Для каждой совокупности параметров рассчитывается вероятность наступления и NPV. Дальше идёт расчёт математического ожидания. В итоге получаем наиболее вероятностное NPV.

Пример

Корпорация должна решить, следует ли вводить новые линейки продуктов. Новый продукт будет иметь расходы на запуск, эксплуатационные расходы, а также входящие денежные потоки в течение шести лет. Этот проект будет иметь немедленный (T = 0) отток денежных средств в размере $ 100 000 (которые могут включать в себя механизмы, а также расходы на обучение персонала). Другие оттоки денежных средств за 1-6 лет ожидаются в размере $ 5000 в год. Приток денежных средств, как ожидается, составит $ 30 000 за каждый год 1-6. Как только компания получает прибыль от реализации проекта (например, $ 25 000 после первого года), она кладёт их в банк под 10 % годовых на оставшееся до конца проекта время (то есть на оставшиеся 5 лет для первых $ 25 000). Все денежные потоки после уплаты налогов, и на 7 год никаких денежных потоков не планируется. Ставка дисконтирования составляет 10 %.

Таким образом, требуется оценить, какая сумма больше:

100 000 ⋅ ( 1 + 0.1 ) t ≶ ∑ i = 1 t p i ⋅ ( 1 + 0.1 ) ( t − i ) {\displaystyle 100\,000\cdot (1+0.1)^{t}\lessgtr \sum _{i=1}^{t}p_{i}\cdot (1+0.1)^{(t-i)}} , где p i {\displaystyle p_{i}} — доход от проекта, полученный в i-й год реализации проекта, t — общая длительность проекта. Поделим обе части на ( 1 + 0.1 ) t {\displaystyle (1+0.1)^{t}} : 100 000 ≶ ∑ i = 1 t p i ⋅ ( 1 + 0.1 ) ( − i ) {\displaystyle 100\,000\lessgtr \sum _{i=1}^{t}p_{i}\cdot (1+0.1)^{(-i)}} .

Каждое слагаемое в правой части неравенства — это приведённая стоимость денег по годам. Например, $ 25 000, полученные от реализации проекта после первого года и положенные в банк на 5 лет, дадут такой же доход, как $ 22 727, положенные в банк в начальный момент времени на 6 лет. Таким образом, приведённая стоимость (PV) может быть рассчитана по каждому году:

Год Денежный поток Приведённая стоимость
T=0 − 100 000 ( 1 + 0.10 ) 0 {\displaystyle {\frac {-100\,000}{(1+0.10)^{0}}}} — $ 100 000
T=1 30 000 − 5000 ( 1 + 0.10 ) 1 {\displaystyle {\frac {30\,000-5000}{(1+0.10)^{1}}}} $ 22 727
T=2 30 000 − 5000 ( 1 + 0.10 ) 2 {\displaystyle {\frac {30\,000-5000}{(1+0.10)^{2}}}} $ 20 661
T=3 30 000 − 5000 ( 1 + 0.10 ) 3 {\displaystyle {\frac {30\,000-5000}{(1+0.10)^{3}}}} $ 18 783
T=4 30 000 − 5000 ( 1 + 0.10 ) 4 {\displaystyle {\frac {30\,000-5000}{(1+0.10)^{4}}}} $ 17 075
T=5 30 000 − 5000 ( 1 + 0.10 ) 5 {\displaystyle {\frac {30\,000-5000}{(1+0.10)^{5}}}} $ 15 523
T=6 30 000 − 5000 ( 1 + 0.10 ) 6 {\displaystyle {\frac {30\,000-5000}{(1+0.10)^{6}}}} $ 14 112

Сумма всех этих значений является настоящей чистой приведённой стоимостью, которая равна $ 8881.52. Поскольку NPV больше нуля, то было бы лучше инвестировать в проект, чем класть деньги в банк (под 10 % годовых с капитализацией процентов), и корпорации должны вкладывать средства в этот проект, если нет альтернативы с более высоким NPV.

Тот же пример с формулами в Excel:

  • NPV (ставка, net_inflow) + initial_investment
  • PV (ставка, year_number, yearly_net_inflow)

При более реалистичных проблемах необходимо будет рассмотреть другие факторы, как расчет налогов, неравномерный денежный поток и ценности, а также наличие альтернативных возможностей для инвестиций.

Кроме того, если мы будем использовать формулы, упомянутые выше, для расчёта NPV — то мы видим, что входящие потоки (притоки) денежных средств являются непрерывными и имеют такую же сумму; и подставив значения в формулу

1 − ( 1 + i ) − n i {\displaystyle {\frac {1-(1+i)^{-n}}{i}}} мы получим 1 − ( 1 + 0.1 ) − 6 0.1 = 4.3553 {\displaystyle {\frac {1-(1+0.1)^{-6}}{0.1}}=4.3553} .

И если умножить полученное значение на денежные потоки (CF), и учесть первоначальные затраты, то в итоге вычислим чистую приведённую стоимость (NPV):

− 100 000 = $ 8 881.52 {\displaystyle -100\,000=\$\,8\,881.52}

Поскольку NPV больше нуля, то было бы лучше инвестировать в проект, чем ничего не делать, и корпорации должны вкладывать средства в этот проект, если нет альтернативы с более высоким NPV.

Сравнение эффективности альтернативных проектов

Использование NPV может привести к ошибке при сравнении эффективности разнопараметрических инвестиционных проектов и при формировании портфеля инвестиционных проектов. Под разнопараметрическими понимаются такие проекты, у которых одновременно отличаются три инвестиционных параметра: сумма инвестиций, расчётный период и ежегодные финансовые результаты (Коган, 2012).

Покажем это на следующем примере. Сравним эффективность покупки векселя А и векселя В. Эти сделки можно рассматривать как простейшие инвестиционные проекты с единственным оттоком и единственным притоком. Вексель А стоит 100 тыс.р., его выкупят через три года, заплатив при этом 150 тыс.р. Вексель В стоит 50 тыс.р., его выкупят через два года, заплатив при этом 70 тыс. р. При ставке дисконта 10 %, N P V A {\displaystyle NPV^{A}} = 12,7 тыс.р., что больше, чем N P V B {\displaystyle NPV^{B}} =7,85 тыс.р.

Таким образом, по NPV, проект А эффективнее проекта В. Казалось бы, инвестору выгоднее покупать векселя типа А. Однако, представим, что этот инвестор купит два векселя В. При этом он потратит те же 100 тыс.р., что и для покупки векселя А, но выгод получит больше: N P V B + B {\displaystyle NPV^{B+B}} = 15,7 тыс.р. таким образом, инвестиции в векселя типа В выгоднее, чем инвестиции в векселя типа А.

Эти два проекта отличаются не только по суммам инвестиций, но и по расчётным периодам: покупка векселя А — трёхлетний проект, покупка векселя В — двухлетний проект. Если добавить в анализ и этот фактор, то покупка векселя А выглядит ещё менее выгодной. Так, инвестор, имеющий только 100 тыс.р., за шесть лет сможет только дважды купить вексель типа А (NPV этих двух сделок составит 22,24 тыс.р.), но трижды по два векселя типа В (NPV этих шести сделок составит 39,4 тыс.р.). Таким образом, в результате включения в анализ суммы инвестиций и расчётного периода проектов, векселя типа В выглядят ещё более эффективными, чем векселя типа А.

Из данного примера следует вывод, что для корректного анализа эффективности инвестиций, необходимо учитывать три фактора: NPV, сумму инвестиций и расчётный период проекта. Все эти факторы объединены в индекс скорости удельного прироста стоимости, поэтому при использовании этого показателя не возникают вышеуказанные проблемы.