Коэффициент вариации

Что такое коэффициент вариации и для чего он нужен?

Итак, как мне кажется, нелишним будет провести небольшой теоретический экскурс и разобраться в природе коэффициента вариации. Этот показатель необходим для отражения диапазона данных относительно среднего значения. Иными словами, он показывает отношение стандартного отклонения к среднему значению. Коэффициент вариации принято измерять в процентном выражении и отображать с его помощью однородность временного ряда.

Коэффициент вариации станет незаменимым помощником в том случае, когда вам необходимо будет сделать прогноз по данным из заданной выборки. Этот индикатор выделит главные ряды значений, которые будут наиболее полезными для последующего прогнозирования, а также очистит выборку от малозначительных факторов. Так, если вы видите, что значение коэффициента равно 0%, то с уверенностью заявляйте о том, что ряд является однородным, а значит, все значения в нём равны один с другим. В случае, если коэффициент вариации принимает значение, превышающее отметку в 33%, то это говорит о том, что вы имеете дело с неоднородным рядом, в котором отдельные значения существенно отличаются от среднего показателя выборки.

Рассчитываем коэффициент в Экселе

К сожалению, в Excel не заложена стандартная формула, которая бы позволила рассчитать показатель вариации автоматически. Но это не значит, что вам придётся производить расчёты в уме. Отсутствие шаблона в «Строке формул» никоим образом не умаляет способностей Excel, потому вы вполне сможете заставить программу выполнить необходимый вам расчёт, прописав соответствующую команду вручную.

Вставьте формулу и укажите диапазон данных

Для того чтобы рассчитать показатель вариации в Excel, необходимо вспомнить школьный курс математики и разделить стандартное отклонение на среднее значение выборки. То есть на деле формула выглядит следующим образом — СТАНДОТКЛОН(заданный диапазон данных)/СРЗНАЧ(заданный диапазон данных). Ввести эту формулу необходимо в ту ячейку Excel, в которой вы хотите получить нужный вам расчёт.

Не забывайте и о том, что поскольку коэффициент выражается в процентах, то ячейке с формулой нужно будет задать соответствующий формат. Сделать это можно следующим образом:

  1. Откройте вкладку «Главная».
  2. Найдите в ней категорию «Формат ячеек» и выберите необходимый параметр.

Как вариант, можно задать процентный формат ячейке при помощи клика по правой кнопке мыши на активированной клеточке таблицы. В появившемся контекстном меню, аналогично вышеуказанному алгоритму нужно выбрать категорию «Формат ячейки» и задать необходимое значение.

Выберите «Процентный», а при необходимости укажите число десятичных знаков

Возможно, кому-то вышеописанный алгоритм покажется сложным. На самом же деле расчёт коэффициента так же прост, как сложение двух натуральных чисел. Единожды выполнив эту задачу в Экселе, вы больше никогда не вернётесь к утомительным многосложным решениям в тетрадке.

Всё ещё не можете сделать качественное сравнение степени разброса данных? Теряетесь в масштабах выборки? Тогда прямо сейчас принимайтесь за дело и осваивайте на практике весь теоретический материал, который был изложен выше! Пусть статистический анализ и разработка прогноза больше не вызывают у вас страха и негатива. Экономьте свои силы и время вместе с табличным редактором Excel.

Источник: https://nastroyvse.ru/programs/review/koefficient-variacii-v-exsel.html

Показатели вариации

Абсолютные показатели

  • размах вариации:

R = x max − x min ; {\displaystyle R=x_{\max }-x_{\min };}

  • среднее линейное отклонение:

a = 1 n ∑ i = 1 n | x i − x ¯ | , {\displaystyle a={\frac {1}{n}}\sum _{i=1}^{n}|x_{i}-{\bar {x}}|,}

где x ¯ {\displaystyle {\bar {x}}} — выборочное среднее.

  • среднеквадратическое отклонение:

σ = 1 n ∑ i = 1 n ( x i − x ¯ ) 2 ; {\displaystyle \sigma ={\sqrt {{\frac {1}{n}}\sum _{i=1}^{n}\left(x_{i}-{\bar {x}}\right)^{2}}};}

  • дисперсия:

σ 2 = 1 n ∑ i = 1 n ( x i − x ¯ ) 2 ; {\displaystyle \sigma ^{2}={\frac {1}{n}}\sum \limits _{i=1}^{n}\left(x_{i}-{\bar {x}}\right)^{2};}

  • среднее квартильное (квантильное) расстояние:

q = ( Q 3 − M e ) + ( M e − Q 1 ) 2 = ( Q 3 − Q 1 ) 2 , {\displaystyle q={\frac {(Q_{3}-\mathrm {Me} )+(\mathrm {Me} -Q_{1})}{2}}={\frac {(Q_{3}-Q_{1})}{2}},}

где Q 1 {\displaystyle Q_{1}} , Q 3 {\displaystyle Q_{3}} — первый (нижний) и третий (верхний) квартили соответственно, M e = Q 2 {\displaystyle \mathrm {Me} =Q_{2}} — медиана (второй или серединный квартиль).

Относительные показатели

  • относительный размах вариации (коэффициент осцилляции):

ρ = R x ¯ ; {\displaystyle \rho ={\frac {R}{\bar {x}}};}

  • относительное отклонение по модулю (линейный коэффициент вариации):

m = a x ¯ ; {\displaystyle m={\frac {a}{\bar {x}}};}

  • коэффициент вариации:

V = σ x ¯ ; {\displaystyle V={\frac {\sigma }{\bar {x}}};}

Коэффициент вариации случайной величины — мера относительного разброса случайной величины; показывает, какую долю среднего значения этой величины составляет её средний разброс. Исчисляется в процентах. Вычисляется только для количественных данных. В отличие от среднего квадратического или стандартного отклонения измеряет не абсолютную, а относительную меру разброса значений признака в статистической совокупности. По мнению автора рассматриваемого коэффициента К. Пирсона — коэффициент вариации эффективнее абсолютного показателя вариации.

Известно, что коэффициент вариации может быть записан посредством долей:

V = n ∑ i = 1 n p i 2 − 1 , {\displaystyle V={\sqrt {n\sum _{i=1}^{n}p_{i}^{2}-1}},}

где p i = x i ∑ i = 1 n x i {\displaystyle p_{i}={\frac {x_{i}}{\sum \limits _{i=1}^{n}x_{i}}}} .

ν = σ μ , {\displaystyle \nu ={\frac {\sigma }{\mu }},}

где μ {\displaystyle \mu } — математическое ожидание. Эта формула применяется для вероятностных моделей.

  • относительное квартильное расстояние:

d = q x ¯ . {\displaystyle d={\frac {q}{\bar {x}}}.}

Коэффициент вариации

Из всех показателей вариации среднеквадратическое отклонение в наибольшей степени используется для проведения других видов статистического анализа. Однако среднеквадратическое отклонение дает абсолютную оценку меры разбросанности значений и чтобы понять, насколько она велика относительно самих значений, требуется относительный показатель. Такой показатель называется он коэффициент вариации.

Формула коэффициента вариации:

Данный показатель измеряется в процентах (если умножить на 100%).

В статистике принято, что, если коэффициент вариации

меньше 10%, то степень рассеивания данных считается незначительной,

от 10% до 20% — средней,

больше 20% и меньше или равно 33% — значительной,

значение коэффициента вариации не превышает 33%, то совокупность считается однородной,

если больше 33%, то – неоднородной.

Средние, рассчитанные для однородной совокупности – значимы, т.е. действительно характеризуют эту совокупность, для неоднородной совокупности – незначимы, не характеризуют совокупность из-за значительного разброса значений признака в совокупности.

Возьмем пример с расчетом среднего линейного отклонения.

И график для напоминания

По этим данным рассчитаем: среднее значение, размах вариации, среднее линейное отклонение, дисперсию и стандартное отклонение.

Среднее значение – это обычная средняя арифметическая.

Размах вариации – разница между максимумом и минимумом:

Среднее линейное отклонение считается по формуле:

Дисперсия считается по формуле:

Среднеквадратическое отклонение – квадратный корень из дисперсии:

Расчет сведем в табличку.

Вариация показателя отражает изменчивость процесса или явления. Ее степень может измеряться с помощью нескольких показателей.

  1. Размах вариации – разница между максимумом и минимумом. Отражает диапазон возможных значений.

  2. Среднее линейное отклонение – отражает среднее из абсолютных (по модулю) отклонений всех значений анализируемой совокупности от их средней величины.

  3. Дисперсия – средний квадрат отклонений.

  4. Среднеквадратическое отклонение – корень из дисперсии (среднего квадрата отклонений).

  5. Коэффициент вариации – наиболее универсальных показатель, отражающий степень разбросанности значений независимо от их масштаба и единиц измерения. Коэффициент вариации измеряется в процентах и может быть использован для сравнения вариации различных процессов и явлений.

Таким образом, в статистическом анализе существует система показателей, отражающих однородность явлений и устойчивость процессов. Часто показатели вариации не имеют самостоятельного смысла и используются для дальнейшего анализа данных. Исключением является коэффициент вариации, который характеризует однородность данных, что является ценной статистической характеристикой.

Источник: https://StudFiles.net/preview/5316293/page:3/

Коэффициент вариации по 44-ФЗ. Пример расчёта, формула

Одной из ключевых стадий подготовки закупочной документации становится расчет начальной максимальной цены контракта (НМЦК). Законодательно предусмотрено несколько способов, с помощью которых можно производить расчеты. Чаще всего используется метод сопоставимых рыночных цен. При этом итоговая НМЦК должна определяться с учетом коэффициента вариации. Поэтому всем заказчикам необходимо понять, что включает в себя этот показатель и как его правильно определить.

Что такое коэффициент вариации

Размер НМЦК определяется еще на этапе планирования. Эта сумма должна быть отражена в плане и план-графике. Непосредственно перед подготовкой извещения она корректируется с учетом сложившейся на тот момент экономической обстановки. Вопросы, связанные с НМЦК рассматриваются в статье 22 44-ФЗ. Методики ее расчета описаны в Приказе Министерства экономики и развития № 567 от 02 октября 2013 года. В этом же документе приводятся правила определения коэффициента вариации.

Разработано несколько методик выявления НМЦК: нормативная, тарифная, проектно-сметная, затратная. Самым приоритетным считается метод сопоставимых рыночных цен. Именно его рекомендуется использовать при определении стартовой цены. Он предполагает сравнение коммерческих предложений, предоставляемых потенциальными поставщиками по запросу заказчика. Для проведения такого анализа и применяется коэффициент вариации. Он выражается в процентах.

Под коэффициентом вариации понимается мера относительного разброса предлагаемых цен. Он показывает, какую долю занимает средний разброс цен от среднего значения цены. Этот показатель может принимать следующие значения:

  1. Меньше 10%. В таком случае разница в ценах признается незначительной.
  2. От 10% до 20%. Разброс считается средним.
  3. От 20% до 33%. Разница признается значительной, но допустимой.
  4. Свыше 33%. Данные неоднородны. При расчете НМЦК не допускается использовать данные с коэффициентом вариации свыше 33%.

Для определения коэффициента разработана специальная формула. По ней легко подсчитать параметр, подставив соответствующие данные. Упростить себе задачу можно, используя калькуляторы, которые сегодня широко представлены в интернете.

Что делать, если коэффициент завышен

Если при расчете коэффициента вариации получилось значение меньше 33%, то выборка признается однородной. Следовательно, полученное значение можно использовать для определения НМЦК.

Если возникла такая ситуация, что значение коэффициента оказывается выше 33 процентов, тогда потребуется внесение корректировок в используемые данные. Для этого проводится дополнительное исследование рынка. Необходимо собрать коммерческие предложения от большего количества поставщиков и повторить расчет на основе новых данных. Если собрать дополнительные предложения не получается, можно воспользоваться сведениями из ранее заключенных договоров, которые хранятся в реестре контрактов.

В крайней ситуации, когда никак не получается добиться нужного коэффициента вариации можно исключить из выборки неподходящие предложения. Вы также можете попросить поставщика указать в своем предложении нужную вам сумму.

Правила расчета

Методика расчета коэффициента вариации прописана в приказе Минэкономразвития № 567. Согласно действующим нормам заказчик должен направить не менее пяти запросов коммерческих предложений потенциальным поставщикам. Для расчета используются не менее трех предложений, полностью соответствующих требованиям заказчика.

Стоит отметить, что приказ № 567 не является нормативным актом, следовательно, его исполнение не обязательно. За его нарушение никаких штрафных санкций не предусматривается. Однако во избежание спорных ситуаций заказчика рекомендуется пользоваться именно этими правилами расчета.

Для определения коэффициента вариации применяется следующая формула:

Среднеквадратичное отклонение позволяет определить разброс данных. Для его определения выбирают среднюю цену и меру разброса. Вычислить среднеквадратичное отклонение удается по следующей формуле:

В ситуациях, когда закупка включает в себя одновременно несколько позиций, расчет ведется по каждой из них. Это позволяет выявить товары с наибольшим разбросом цен.

Пример расчета

Предположим, что государственное учреждение проводит закупку принтеров для собственных нужд. Потенциальным поставщикам были отправлены соответствующие запросы. Было получено четыре коммерческих предложения цен: 2500 рублей, 2800 рублей, 2450 рублей и 2600 рублей.

В первую очередь необходимо рассчитать среднеарифметическое значение цены

Следующим шагом становится расчет среднеквадратичного отклонения

Осталось только рассчитать коэффициент вариации

Полученное значение коэффициента меньше 33%, следовательно, все собранные данные подходят для расчета стартовой цены контракта. Расчет НМЦК и коэффициента вариации оформляются в форме отчета, который становится обязательной частью закупочной документации.

Коэффициент вариации – важный инструмент, позволяющий оценить правильность ценовых предложений, полученных от поставщиков. Поэтому при составлении документации заказчикам необходимо учитывать правила расчета этого показателя и особенности его применения.

Источник: https://GoszakupkiRF.ru/poleznye-stati/219-koeffitsient-variatsii